schema:description |
"In probability theory, to say that two events are independent (alternatively called statistically independent or stochastically independent) means that the occurrence of one does not affect the probability of the other. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other. The concept of independence..."^^xsd:string
|
schema:mainEntityOfPage |
https://diamondhairclinic.com/vocabulary/independent/
|
schema:name |
"independent"^^xsd:string
|
schema:sameAs |
http://it.dbpedia.org/resource/Indipendenza_stocastica
|
schema:sameAs |
http://pl.dbpedia.org/resource/Zdarzenia_losowe_niezależne
|
schema:sameAs |
http://fr.dbpedia.org/resource/Indépendance_(probabilités)
|
schema:sameAs |
esdbpr:Independencia_(probabilidad)
|
schema:sameAs |
dbr:Independence_(probability_theory)
|
schema:sameAs |
http://de.dbpedia.org/resource/Stochastische_Unabhängigkeit
|
schema:sameAs |
http://ca.dbpedia.org/resource/Independència_estadística
|
schema:sameAs |
http://sv.dbpedia.org/resource/Oberoende
|
schema:sameAs |
http://ru.dbpedia.org/resource/Независимость_(теория_вероятностей)
|
schema:sameAs |
http://uk.dbpedia.org/resource/Незалежність_(імовірність)
|
schema:sameAs |
http://sl.dbpedia.org/resource/Neodvisnost_(statistika)
|
schema:sameAs |
http://tr.dbpedia.org/resource/Bağımsızlık_(olasılık_kuramı)
|
schema:sameAs |
http://nl.dbpedia.org/resource/Onafhankelijkheid_(kansrekening)
|
schema:sameAs |
http://pt.dbpedia.org/resource/Independência_(estatística)
|
schema:sameAs |
http://en.dbpedia.org/resource/Independence_(probability_theory)
|
schema:url |
https://diamondhairclinic.com/vocabulary/independent/
|
rdf:type |
schema:Thing
|